
d&Lf C r ~II
SECURITY CLASSIFICATION OF THIS PAGE

FIREPOT DOCUMENTA~i
Ia. REPORT'SECURITY CLASSIFICATION REO b. RESTi AD -A 206 656
&Unclassfied

2-1. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIouuUPIVA1MIvgLy UP' KU'KIK
Approved for public release;

t2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

I _ ___ ___ ___ ___ ___ _ POSR-Th. 8 9-0 39 5
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Chemical Dynamics Corporation (if applicable) USAF,AFSC AFOSR

6c. ADDRESS (Citye State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
9560 Pennsylvania Avenue Air force Office of Scientific Research
Upper Marlboro, Maryland 20772 Building 410 Bolling AFB, DC 20332-6448

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F49620-88-C-0085

USAF,AFSC ______ ____________________

Bc. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Air Force Office of Scientific Research PROGRAM IPROJECT ITASK ,WORK UNIT
Buildind 410 ELEMENT NO. NO. NO. IACCESSION NO.

Bolling AFB, DC 20332-6448 6550.r I 3oa5 I4 A
11. TITLE (include Security Classification)
CALCULATION OF KINETIC DATA FOR PROCESSES LEADING TO UV SIGNATURES

P.K . Swaminathan, G.A. Natanson, B.C. Garrett, M.J. Redmon

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Da) S. PAGE COUNT
Final FROM 1AUG88 To 31JAN89 31 MAR89

16. SUPPLEMENTARY NOTATION
The view, opinions and/or findings contained in this report are those
of the author(s) and should not be construed as an official AFOSR position,policy or decisi

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD IGROUP ISUB-GROUP SEREEE

19. ABSJICT(Continue on reverse if necessary and identify by block number)

/SEE REVERSE

ELECTE.
~APR 1419

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS (bhift isi PIlLr

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
LI~ Cl Lrr Dais202-767-4960 'IAFOSR/TIC

00 FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

89 4:~. 2>



Block 18 - Subject Terms (continued)
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Block 19 - Abstract (continued)

Novel state-of-the-art computational techniques were developed and validated for
studying collisional processes responsible for producing Infrared and ultraviolet signatures
in rocket plumes. The promising new methods involve computation of cross sections and
rates within a semiclassical methodology. Two of the key beneficiary programs wlRinhtnheI.

A4SA!'are the SPURC and the CHARM programs which require detailed microscopic
A 'dynamical information (kinetic rates and cross sections) about such collisional processes

for successful modeling of the chemistry within appropriate flowfield simulation codes.

Successful prediction and interpretation of ultraviolet signatures require treating

collision induced transitions between different electronic states caused by the coupling

between electronic and nuclear motions in molecules during collisions. Electronic

transitions bring in inherently quantum mechanical effects that have no analog in classical
mechanics. The task of numerically solving the quantum mechanical equationstof motion is
still an unsolvable computational problem for many realistic molecular systems. The
semiclassical theory is accurate enough to reproduce specific quantum mechanical features n er e 5 s" ,

absent in the classical picture and computationally practical because it leads to ordinary "

differential equations instead of the partial differential equat'fiorofquantum mcqhanics - '

- ; Electrnic :tructure information required in modelling the production of candidate

excited species, nitrogen, nitric oxide, and hydroxyl radical molecules in some elementary
reactions was analyzed. It was determined that modem quantum chemistry can provide all
the required information involving excited hydroxyl production and less extensive data for

other systems. C1 tt s
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Introduction
One critical area of military technology that is relevant to both the Air Force and the

Strategic Defense Initiative (SDI) is the requirement to locate ballistic missiles, particularly

during the boost phase of the trajectory. To this end, codes that model radiation emitted

from rocket plumes have been developed over a number of years extending back to the

sixties. With the advent of SDI, the requirements on these codes have been made more

stringent, and the precision required in their predictions has increased, in large part due to

the need to pinpoint the hard body within the extended radiation field of the plume.

The need for kinetic data to describe high-altitude phenomena leading to plume

signatures has been evident for some time.1 Since the primary atmospheric components at

altitudes of interest are N2 and O(3P), cross sections involving these species with exhaust

molecules are of particular importance. However, experimental results for processes

involving these species have been very difficult to obtain.2 Because experimental data for a

great many of the processes of interest at high altitudes are simply lacking, reliable

theoretical data have become essential for the predictive capabilities of plume modelling

codes such as CHARM and SPURC.
Theoretical methods are applicable to a wide variety of molecular systems over

large velocity ranges. Thus they provide a means to obtain much of the required data;

primarily excitation cross sections and rates for vibrational, rotational and electronic

energy transfer processes (T-VRE) and for chemical reactions. The purpose of this

research was to develop new semiclassical methods to improve the ability of theoretical

methods to predict kinetic data of sufficient accuracy to be of use in high-altitude plume

technology. Virtually all of the theoretical results for excitation (T-VR) processes of

interest in high altitude plume kinetics (i.e. vibrational and rotational excitation of

molecules by oxygen atoms) have been provided by the Chemical Dynamics group and

their collaborators from research dating back to the late seventies.3 ,4 This research was

carried out under sponsorship of the Air Force Astronautics Laboratory (AFAL -
previously AFRPL). The results covered a number of systems, including H20, C0 2, HF,

HCI, and CO. The theoretical results significantly extended the data base of available

vibrational excitation cross sections and provided a fairly reliable picture of the relative

magnitudes of the cross sections. However, of necessity at that time, classical mechanics

was used for the dynamical cross section calculations. The need for methods to more

accurately treat vibrational energy transfer processes was evident, and with the recent

interest in UV signature phenomena, a method applicable to electronic excitation was also

needed.

2
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Successful prediction and interpretation of UV-signatures requires detailed
microscopic information about the responsible collisional processes. One of the central

processes in this connection is collision-induced transitions between different electronic
states. The standard quantum-mechanical description of collisional processes is based on
the adiabatic separation of nuclear and electronic motions, assuming that the electrons

instantaneously adjust to nuclear motions because of the large difference in their masses.
Encounters taking place on a single adiabatic surface can be described in the zeroth-order

approximation simply by the classical equations of motion. However transitions from one

electronic surface to another are essentially quantum-mechanical processes which have no

analogs in classical mechanics. The task of numerically solving the Schroedinger equation

governing the collisional processes in question is still an unsolvable computational problem

for realistic molecular systems.

Semiclassical theory fills the gap between the quantum and classical treatments.

Approximating the quantum mechanical wavefunction by the first term of an asymptotic

expansion leads to ordinary first-order differential equations for the semiclassical solutions
rather than the more difficult partial differential equations encountered in quantum
mechanics. This approximation is valid except for the lowest energies and is sufficiently

accurate to reproduce specific quantum-mechanical features which are completely absent in
the classical picture. In particular the semiclassical theory is capable of describing the
electronically nonadiabatic transitions which are the main concern in the present research.

There is however an essential obstacle that has been hindering progress in this area

for many years. At classical turning points the kinetic energy goes to zero and the
semiclassical solutions are singular. In one-dimensional problems this situation is
corrected using connection formulae. 5 that give the recipe of how to continue the
semiclassical wavefunction after its reflection at the turning point. This correction exploits
conservation of the flux to connect the incoming and outgoing solutions but is insufficient

in the multi-dimensional case as there may be exchange of flux between different degrees of
freedom. The current state-of-the-art theory in this area is mainly developed at the level of
formal theorems which prove existence of solutions, but do not provide any practical

numerical algorithms to find them.

Objectives

The objectives of Phase I were (1) to identify relevant electronic structure input for
UV-signature-producing collisional processes involving excited NO, OH and N2
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molecules, and (2) to develop semiclassical techniques capable to provide the necessary

state-to-state dynamical information for collisional processes relevant to SPURC.

Task 1 involves examining the molecular correlation diagrams for collisional

processes between relevant atmospheric/plume species in order to identify the associated
quantum chemical potential energy surfaces and electronic couplings, operative in the

energy range of interest. Task 2 involves theoretical developments that enable semiclassical

wavefunction computations for multidimensional electronically inelastic systems.

Status of Research

Significant progress on both the tasks of Phase I is reported by presenting detailed

results. Most notably, task 2 has resulted in a significant progress in overcoming two most

serious problems of the nonadiabatic semiclassical theory, making possible its practical

implementation for the quantitative description of processes leading to UV radiation. In

addition, an improved method of treating T-V excitation on a single adiabatic surface was

also developed.

The adiabatic separation of nuclear motions in the semiclassical picture made it

possible to connect incoming and outgoing semiclassical solutions, reproducing correctly
interference effects between different trajectories. Validity of the adiabatic separation of

streamline and vibrational motions was demonstrated by comparing the semiclassical and

exact quantum-mechanical results for vibrational energy transfer in an atom-diatom

collision in the lOS approximation6.

Including the adiabatic hypothesis into the Self-Consistent Eikonal Method

(SCEM) 7 gave us a practical tool for treating electronically inelastic processes with a few

degree of freedom. As another test of applicability of the single average potential (the so-

called Ehrenfest potential obtained by weighting the adiabatic potential functions with the

probabilities for the system to be in the appropriate electronic state) we studied vibrational
excitation of the diatomic molecule in an atom-diatom collision in the IOS approximation by
expanding the Schroedinger equation in the vibrational basis set.

Phase I also resulted in the development of a new extended approach called

SCACEM (Self-Consistent Adiabatically-Corrected Eikonal Method) for a more accurate

treatment of electronic inelasticity in molecular collisions; this goes beyond the Ehrenfest

effective potential approximation employed in SCEM without compromising on the

advantages of the latter method. The following executive summary emphasizes the relevant
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implications of our computational approach for future SPURC-related investigations.

Phase I results are overviewed in a following section. Two manuscripts (one on the
extended formal theory and one on numerical studies) are included as appendices in this
report.

Executive Summary

An analysis of the correlation diagrams for dominant collisional pathways leading to
excited states of the three candidate molecules (NO, OH, and N2) was conducted to identify

a feasible system for quantum chemistry input. The problem of OH(27+ ) radical formation

in the reactive process:

O(3p) + H2 _4 OH(2 I+ ) + H(2S) (A)

emerges as an immediately feasible case for quantum chemical characterization of potential

energy surfaces and interelectronic state couplings. Clearly, the dynamical treatment of

process (A) requires a computational description of electronic nonadiabaticity as well as

reaction (nuclear rearrangement) leading to an electronically excited OH(2z+) product

during collisions.

lit Phase I we successfully overcame the most serious principal defect of the

semiclassical theory caused by its break-down at classical turning points. We developed a

new technique to construct semiclassical wavefunctions for realistic

potential surfaces regardless of the complexity of the latter. For electronically

inelastic processes this new technique is included as an integral part either in the SCEM

(whose effectiveness has been proved earlier and is additionally supported by new

calculations performed during Phase I) or in the aforementioned new theory, SCACEM,

which is expected to be applicable even in those cases when potential surfaces in different

electronic states significantly differ from each other.

Mathematical arguments presented in support of the new formalism make it

especially attractive for the semiclassical description of reactive encounters. In fact,

although the latter may be formally treated within SCEM, they may involve large relative

deviations of different potential energy surfaces, thereby leading to errors from employing

a simple average Ehrenfest potential. The improved theory, SCACEM, generated in Phase

I as a feasible strategy to accurately treat processes involving both electronic inelasticity and
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reaction, overcomes this difficulty by running trajectories separately on each potential

surface.

Another complication associated with treatment of reactive encounters by means of

a single effective potential comes from the fact that stretching motions of interatomic bonds

undergo a sharp change when bonds break; in order to select coordinates of quasi-periodic

motions one has to refer the vibrations to the appropriate reaction path. Since the reaction

path varies from one potential surface to another, it requires use of different variables for

different potential surfaces; this is relatively easy to implement in the frame of the new

theory. The new theory also enables to describe tunneling effects along the streamline

coordinate, including a certain type of resonances.

During Phase I the applicability of the developed semiclassical theory has been

tested and validated for a two-dimensional representation of vibration?! excitation in O+HF
and Na+H 2 collisions for which we can generate exact quantum results. These successful

applications encourage further exploration of the technique in realistic multidimensional

applications.

In conclusion, Phase I research has (1) revealed that reliable ab initio quantum

chemical input can be obtained for SPURC-related systems, (2) established that elementary

computational modules required to build the necessary dynamical treatments for SPURC-

related rate computations are reliable (Appendix 2), (3) resulted in a significant theoretical

break-trough in development of the methodology capable to provide the nuclear state-to-

state information that both SPURC and CHARM ultimately need. It is also clear that

further systematic method refinement is essential since this type of computational input is

valuable to the USAF due to the cost and difficulties for experimental determination of the

required data. Towards this end an extended semiclassical theoretical methodology based

on the eikonal wavefunction ansatz (Appendix 1) should be employed.

Phase I Results

1. SPURC-related system survey

The three candidate molecules considered were OH, NO, and N2. Correlation

diagrams for the following processes leading to the production of excited species were

examined:

O(3P)+ N2 -4 NO( 2Z+) + N(4 S)
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O(3p) + H2 -- OH(2 + ) + H(2S)

O(3p)+ N2(XI'g+) -4 N2(1Eu+ ) + O(3p)

Details of the pertinent electronic states, dominant interelectronic state couplings, and the
likely dynamical pathways for the production of the excited species were analyzed. The
feasibility of obtaining the quantum chemical input was examined, and the conclusion is
that accurate surfaces can be obtained for the (O,H2 ) system, with useable although less

accurate surfaces for other systems. We also point out that some of the processes emerging

from the recent kinetics work8 at Aerospace Corporation reveal important electronic energy
transfer processes relevant to UV signatures, and we believe that a theoretical treatment can
provide useful information to augment the experimental data. Figure 1 is a schematic of the
correlation of fragment molecule states important for the (O,H2 ) system. Figure 2 provides
similar information for the (O,N 2 ) system.

2. Eikonal Wavefunction Method

Theory Development

The formal issues to be examined in Phase I were:

(i) development of prescriptions for continuation of global semiclassical

wavefunctions through classical turning points,

(ii) development of a practical numerical algorithm to extract final populations of
vibrational levels from the semiclassical outgoing solution,

(iii) implementation of the single-surface developments (i), (ii) in the multichannel
theory with valid use of the Ehrenfest effective potential (SCEM),

(iiii) exploration of means to go beyond the assumptions underlying SCEM to take
into account specific topology of the adiabatic potential surfaces, especially responsible for

tunneling and related resonances which gave rise to the new multichannel semiclassical
theory referred to as SCACEM.

The details of Phase I formal developments on all these issues are covered in the formalism
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paper included as Appendix 1. Here we briefly summarize the highlights of these
developments in less mathematical terms.

..........

+ 4 1 3A I 32 1A'

1, 2 A y 1

L -CouplingU

Figure 1. Electronic correlation diagram (Cs symmetry) for low-lying states of the
O(3p) + H2 system.

Adiabatic Approximation of Nuclear Motions in the Semiclassical Picture

When the primary reason for failure of classical mechanics is due to interference
effects between amplitudes along different trajectories (this is typically the case when
tunneling and curve crossing are unimportant), semiclassical techniques have shown the
potential to provide a very efficient computational route that is more accurate than classical
mechanics and less expensive than quantal methods. Their main advantage is that
propagation of wavefunctions along classical trajectories is governed by a set of ordinary
differential equations of the first order which is much easier to solve, compared with the
Schroedinger equation. There is however a serious obstacle that damped any progress in
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Figure 2. Electronic correlation diagram (C. symmetry) for states of the {O(3p),

N2)} system.

this direction for many years -- the semiclassical approximation breaks down for

low velocities such as those experienced when the system hits a potential wall or barrier.

In one-dimensional systems the problem is easily corrected using standard WKB

connection formulae to carry the solutions through those turning points into classically

forbidden regions. Multidimensional systems present a much more difficult problem

because the probability density may flow from one degree of freedom to another and hence

9



one can no longer take advantage of flux conservation to connect incoming and outgoing

solutions.

At the present there are no practical numerical algorithms for the general solution

of this problem. To by-pass the difficulties coming from the turning points we restrict our

analysis to adiabatically separable motions so that one can apply the WKB-connection

formulae for each degree of freedom, namely, we subtract Xc/2 from the Hamilton

characteristic function each time when one of the conjugate momenta changes its sign.

As discussed in Appendix 1 there are two practical problems which can be

immediately treated in such a way: nonreactive atom-diatom scattering and scattering of

diatomic molecules by a surface. To illustrate the specifics of adiabatic separation of

nuclear motions in the semiclassical theory, let us consider atom-diatom collisions with

zero angular momentum. Relative oscillations of two atoms and the nutation of the diatom

give us two quasi-periodic degrees of freedom. As stretching vibration, described by the

variable r, usually has a much larger frequency than the nutation, we treat the former as a

quasi-periodic motion with a frequency parametrically dependent on the nutational angle 0

and the streamline coordinate R. On the other hand, the nutation is expected to be faster

than streamline motion so that we can describe it as quasi-periodic motion with the

frequency dependent parametrically on R. We thus neglect the effect of small-amplitude

oscillations of the interatomic distance r on the nutation of the diatomic and treat the

diatomic as a rigid linear rotator in this articular context. It is important that one needs

these assumptions only to formulate the connection formulas for the asymptotic solutions

and we do not make any approximations in the classical hamiltonian itself to be consistent

with these assumptions.

An extension of the developed technique to describe reactive scattering of two

polyatomic fragments is a more sophisticated problem which will be treated within the

reaction-path formalism.

Numerical Evaluation of the S-Matrix Elements

Singularity of semiclassical wavefunctions in turning points gives rise to another

problem -- a very slow convergence of the their overlaps with quantum mechanical

vibrational wavefunctions used to evaluate final populations of vibrational levels. To

overcome the numerical difficulties associated with it we developed a new mathematical

scheme by formally transforming the (N-l)-dimensional integral, used for evaluation of the
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S-matrix element for a scattering process with N- I quasi-periodic degrees of freedom, into

a N-dimensional integral such that singularities of the semiclassical wavefunction is

compensated by zeros of the Jacobian in the N-dimensional volume element. The

appropriate mathematical details are given in Section VI in Appendix 1.

Self-Consistent Eikonal Method (SCEM) in Applications to Multidimensional

Problems

Finally, for electronically inelastic systems, we recommend that the specified

multidimensional nuclear wavefunction be combined with the self-consistently calculated

electronic amplitudes to obtain the overall (electronic+nuclear) state-to-state transition

amplitudes including interference effects. Section IV in Appendix 1 outlines the main

features of the SCEM propagating trajectories in the field of a single average potential. It

was shown that SCEM corresponds to a very naturai physical picture, namely, the flows of

the probability density on different adiabatic potential surfaces are approximated by the

average flow obtained by weighting the individual flows with the probabilities for the

system to be in the appropriate electronic state. We also revealed some additional terms in

the potential forces governing nuclear motions in the case of a system with two or more

degrees of freedom and suggested the numerical algorithm for their evaluation (see

Appendix A in the enclosed formalism paper referred to above as "Appendix 1").

Significance of those terms for SPURC-related applications is expected to be studied in

more details in future research.

SCEM may be employed for the nonreactive curve-crossing parts to propagate the

wavefunction amplitudes up to a reactive region where the single-surface methods such as

variational transition state theory (VTST) can continue the computations to yield the

required rate constants. An advantage of using VTST is that one avoids the necessary

developments to treat the tunneling in directions perpendicular to the reaction path.

Remember that VTST has developed the reliable recipes to treat this effect with a sufficient

accuracy whereas including it in the semiclassical technique is a relatively complicated

problem. Ideally, for SPURC problems, it will be necessary to propagate SCEM

amplitudes through the nonadiabatic region and to use the constructed semiclassical

wavefunctions to extract initial populations of states for the single-channel problem in the

reactive region.
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Self-Consistent Adiabatically-Corrected Eikonal Method (SCACEM)

The necessary state-to state information can be obtained from the new extended

theory, SCACEM, which exploits the eikonal ansatz for nuclear wavefunctions in each

electronic state, where each wavefunction is propagated now along its own trajectory run
on the appropriate adiabatic potential surface. The new formalism is the most significant

development arising from Phase I for SPURC and was developed to address situations

where the Ehrenfest effective potential used in SCEM can lead to inaccuracies. For

example, it may be anticipated that the Ehrenfest effective potential employed in SCEM can

be inaccurate when a reactive barrier region appears only on one of the electronic surfaces.

One of the advantages of propagating classical trajectories on the particular adiabatic

surfaces as prescribed by SCACEM is that additional approximations are made only in the

nonadiabatic region. The equations beyond this region are the exact limit of the

Schroedinger equation in the adiabatic representation as h tends to zero and hence their

solutions reproduce asymptotically specific features of the exact wavefunctions caused by

local topology of the adiabatic potential surfaces. In particular, the new technique makes it

possible to tre t tunneling along the streamline coordinate R in electronically inelastic

processes providud it takes place beyond the region of strong nonadiabatic couplings.

Let us consider as an example three lowest adiabatic surfaces for Na+H2 C2v

encounters. Fig.3 represents the potential surfaces reported by Eakes 9 for the H-H distance
equal to 1.4a0 . We consider collisions with energies 2.2-2.5eV between the bottom and the

barrier on the upper curve. We start propagation at a large value of R where two excited

electronic states strongly interact with each other so that the probability density flows from

the initially populated excited state to the second one. In the region where the trajectory run

on the upper surface hits the potential barrier the nonadiabatic interactions become

negligible and we can evaluate the reflection coefficient by using the standard formulae of

the one-dimensional tunneling theory10 . As for the trajectory on the lower excited electronic
surface it comes back after hitting the potential wall at R=3a0 and then both flows start

interfering again with each other. Obviously if the upper potential well has quasi-bound

states they manifest as resonances in the scattering amplitudes evaluated according to the

outlined recipe.

12
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Figure 3. Na + H2 potentials for C2 v approach of Na.

Computational implementation of SCACEM and tests to reveal its potential for the

problems on hand should be considered as one of the most important tasks in the future

research.

Numerical Work

The best route to establish the feasibility of approximate semiclassical wavefunction

computations is by direct verification in applications to specific benchmark systems for

which exact quantum-mechanical results are available. To test the developed algorithms we

used the two-dimensional model obtained from the multidimensional Schroedinger equation

in the lOS approximation. The exact calculations with such a model for vibrational

excitation of HF in collisions with oxygen have been reported earlier by us and moreover

any new necessary results could be easily generated by using the available quantum code.
For a similar reason we chose to study the Na+H2 as another example. This system is more

relevant to the SPURC-related programs as the hydrogen molecules may undergo

nonadiabatic transitions. However the latter feature makes exact quantum mechanical

calculations much more complicated even in their simplest two-dimensional reduction so

that the converged exact solutions could be obtained up to now only for vibrational
excitation of H2 in the ground electronic state. We thus had to restrict our analysis at this

stage only to those electronically-elastic processes. It is worth emphasizing that, despite

the simplicity of the model used for our tests it has inherited the main problem of the
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multidimensional semiclassical theory -- its break-down on the boundary of the classically
allowed region.

Compared with the one-dimensional case, the probability density is now
redistributed between different trajectories, leading to nonconservation of the flux at the
moment the trajectory hits the boundary surface. As an extension of our approach to more
realistic systems requires solution of mathematical difficulties similar to those we have
addressed in this research, the method does have the potential to provide useful information
about the dynamics of real collisional processes. The accuracy of this information for
realistic multidimensional applications is now being tested for rotationally inelastic
scattering of NO by an uncorrugated silver surface -- the example earlier treated by us using
rotonic expansions.

At the very outset, the key feasibility issue to be addressed in Phase I was
identified to be the validation of the semiclassical eikonal wavefunction route for computing
nuclear state-to-state collisional excitation propensities. Two examples of collisional
excitation of vibrational excited states were chosen for which exact quantum limit results
were available. These are O+HF and Na+H2 collisions treated within a rotational infinite

order sudden (JOS) model. The QIOS (quantal infinite order sudden) models are typically
the largest available computations for most systems owing to the proliferation of rotational
channels and they do contain the essential physics of vibrational excitation dynamics which
is what the eikonal wavefunction was being tested for its ability to describe.

Phase I numerical work focused on two distinct relevant subtasks:

(1) method development for computing S-matrices using semiclassical eikonal
wavefunction solutions constructed from nuclear trajectories, thus including quantal
interference effects for nuclear motions (numerical tests were based on an implementation
for O+HF collisions leading to vibrational excitations), and

(2) numerical tests on a SCEM treatment of atom-diatom collisions which used a
vibronic expansion (thus quantum mechanically treating vibrations) while classically
treating translation and within the rotational infinite order sudden model of O+HF(v) -4
O+HF(v') as well as Na+H 2(v) -4 Na+H2(v') collisions. The treatment employed here is

often known as the coupled states treatment and is another way of obtaining nuclear state-
to-state information along with electronic state-to-state information.

14



The dynamical model (1) is called the SIOS (for semiclassical infinite-order-

sudden) model and (2) is called the RSVE (for rotational sudden with vibronic expansion)

model. Appendix 2 has a preliminary draft for a paper resulting from these numerical

studies. The key result, represented by the data in Fig. 4, is that even a modest calculation

(employing 20 trajectories) within the SIOS model is able to obtain very good prediction of

microscopic vibrational excitation probabilities, thereby implying that reliable state-to-state

vibrational excitation cross sections will result from such a computation.

O+HF Vibrational Excitation

0.14

0.12 -
A Exact QIOS

" 0.10 -
= RSVE

A 0.08 SIOS (20traj) I

o 0.06

1. 0.04-

0.02 -

0.00

-1.0 -0.5 0.0 0.5 1.0
Cos(IOS Angle)

Figure 4. Benchmark based on rotational infinite order sudden (IOS) angle-dependent
probabilities for v=0 -> v=l vibrational excitation in O(3P)+HF(v--0,j=) collisions at
Etr=3.OeV, for total angular momentum, L=0. QIOS denotes exact quantum 1OS
calculation, RSVE denotes rotational sudden with vibrational expansion, and SIOS denotes
semiclassical infinite order sudden. SIOS results are based on semiclassical eikonal
wavefunctions (obtained here from a meagre 20 classical trajectories and hence expected to
improve) and promise the practically most attractive route for these excitation propensities
in signature problems.

The results shown in Fig. 4 are for relatively low values of probabilities (near

threshold) and this is a crucial aspect required of a dynamical method to be useful for

signature problems: the rationale is that larger Boltzmann weights come in for lower

energies and thus the low-intermediate energy contribution has a significant role to play in

the observed IRIUV signature. Such velocity components are present to some degree in

plume flowfields involving even hypersonic vehicles. The present method offers a
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significant improvement over the previously available classical trajectory method in this

regard. The RSVE method is also seen to be successful, but here we stress the new SIOS

route which is much more economical and has the potential to scale up to much larger

polyatomic problems, a regime where the basis set expansion methods become unwieldy.
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l.Introducion

The standard quantum-mechanical description of collisional processes is based on the

adiabatic separation of nuclear and electronic motions, assuming that the electrons instantaneously

adjust to neaclear motions because of a large difference in their masses. Encounters taking place on

a single adiabatic surface can be described in the zeroth approximation simply by the classical

equations of motion. However transitions from one electronic surface to another are essentially

quantum-mechanical processes which have no analogs in classical mechanics. As numerical

solution of the Schroedinger equation is near the capability limit of modem computers even for

four-atom collisions on a single potential surface1 the prospects of obtaining the reliable

information for nonadiabatic processes do not seem rather promising at the present.

The gap between the quantum and classical treatments can be however filled by the

semiclassical theory. Construction of semiclassical solutions is simpler compared with solving the

Schroedinger equation because they are governed by ordinary differential equations of the first

order (instead of partial differential equations exploited in quantum mechanics). On the other hand,

the semiclassical sheory is accurate enough to reproduce specific quantum-mechanical features

which are completely absent in the classical picture. In particular the semiclassical theory turns out

to be powerful enough to describe the nonadiabatic transitions which are the main concern in the

present research.

There is however an essential obstacle that has been damping a progress in this area for

many years. The semiclassical equations imply that higher-order corrections are negligible

compared with the kinetic energy the system has so that they break down each time when the latter

becomes small as it takes place at classical turning points where semiclassical wavefunctions are

singular. The one-dimensional problem has the well-known solution in terms of the so-called

WKB method2 that gives the recipe of how to continue the semiclassical wavefunction after its

reflection in the turning point. This recipe however essentially exploits conservation of the flux to

connect the incoming and outgoing waves which is insufficient in the multi-dimensional case as

there may be exchange of the probability density between different degrees of freedom. The

current state-of-the-art theory in this area is mainly developed at the level of formal theorems 3

which prove existence of solutions, but do not provide any practical numerical algorithms to find

them. We can cite only a few works4' 5 where the semiclassical scattering theory in many

dimensions was brought to the particular applications.

An additional problem arises when one applies the semiclassical technique to nonadiabatic

processes. It comes from the interference between wavefunctions propagated on different potential
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surfaces. To take into account this effect one needs to locate on each surface the trajectory that goes

through the given point in space which is numerically unaccessable.

Up to now a much more attention has been to given an alternative direction exploiting

angle-action variables, in following pioneering works of Marcus6 and Miller7 however the reported

success in this direction is also very limited. Even disregading the fact that this most popular

approach is related with the Schroedinger equation only through the Correspondence Principle and

hence it remains unclear to what extent its predictions are equivalent to those of the asymptotic

semiclassical theory3'8 there is a pure practical reason for development of the semiclassical theory

in space -- representation of realistic potential surfaces in angle-action variables is a complicated

computational problem that makes the whole scheme unfeasible for applications.

The present research makes a significant progress in overcoming two most serious

problems of the nonadiabatic semiclassical theory, making possible its practical implementation.

The assuimption about adiabatic separation of nuclear motions in the semiclassical picture allows us

to connect incoming and outgoing semiclassical solutions, reproducing correctly interference

effects between different trajectories. Validity of the adiabatic separation of streamline and

vibrational motions is demonstrated by comparing the semiclassical and exact quantum-mechanical

results for the two-dimensional model describing vibrational energy transfer in an atom-diatom

collision in the IOS approximation9 .
Including the adiabatic hypothesis into the Self-Consistent Eikonal Method (SCEM)10 gave

us a practical tool for treating electronically inelastic processes with a few degree of freedom. It

was shown that SCEM corresponds to a very natural physical picture, namely, the flows of the

probability density on different adiabatic potential surfaces are approximated by the average flow

obtained by weighting the individulal flows with the probabilities for the system to be in the

appropriate electronic state. We also revealed some additional terms in the potential forces

governing nuclear motions in the case of a system with two or more degrees of freedom and
suggested the numerical algorithm for their evaluation.

We also developed a new extended approach called SCACEM (Self-Consistent

Adiabatically-Corrected Eikonal Method) for a more accurate treatment of electronic inelasticity in

molecular collisions; this goes beyond the Ehrenfest effective potential approximation employed in

SCEM without compromising on the advantages of the latter method. The new extended theory

also exploits the eikonal ansatz for nuclear wavefunctions in each electronic state but each

wavefunction is propagated now along its own trajectory run on the appropriate adiabatic potential

surface. One of the advantages of propagating classical trajectories on the particular adiabatic

surfaces as prescribed by SCACEM is that additional approximations are made only in the

nonadiabatic region. The equations beyond this region are the exact limit of the Schroedinger

equation in the adiabatic representation as h tends to zero and hence their solutions reproduce

2



asymptotically specific features of the exact wavefunctions caused by local topology of the

adiabatic potential surfaces. In particular, the developed technique makes it possible to treat

tunneling along the streamline coordinate R in ellectronically inelastic processes provided it takes

place beyond the region of strong nonadiabatic couplings.

II.Semiclassical multichannel approximation in the mixed

adiabatic/diabatic representation

Let us consider the multichannel problem described by a set of linear partial differential

equations of the second order:

W E I+V(Q) _h2 --  -
2 Q _~ + F(Q)-9V + H(Q)] V =0 (2.1)

where V (Q) is the column formed by the functions AV, (Q), '2 (Q) ....,Vn(Q) sought for,

S-1/2 gA '  (2.2)

-4
and V are respectively the covariant Laplacian (see next Section for comments) and the gradient
in the space of curvilinear coordinates Q (see next Section for comments), V(Q) is a n x n

diagona matrix having some potentials V (Q) as its diagonal elements, H(Q) is the matrix of_4

potential coupling having zeros at its main diagonal; the components of the vector F are n x n real
antisymmetric matrices describing nonadiabatic couplings. In the adiabatic representation V V(Q)

are the adiabatic potentials and the matrix H(Q) a 0 so that

( _ +=(Q h =Q). AV= 0 (2.3)

The main advantage of the adiabatic representation is that the last term in brackets in (2.3) vanishes

in the limit as h --+ 0. As a result we come to the Hamilton-Jacobi equations governed by the

adiabatic potentials. We can thus treat the coupling term as a perturbation . We show below that

one needs an assumption of such a kind when continuing the semiclassical wavefunction through

turning points of quasiperiodic motions. Another alternative is a system with only potential
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couplings which are relatively small compared with the potentials Vv(Q). In the one-dimensional

case it is sufficient to require that the couplings are negligible near the turning point of the

streamline motion. We come to the problem of this type, when treating quasiperiodic degrees of

freedom quantum- mechanically by representing the Schroedinger equation:

(- -AQ + V(Q) - E (2.4)

in the matrix form:

12 d2 E + V(R) +H(R) A 0  
(2.5)

where R is the streamline coordinate which is assumed to be orthogonal to all others. As a result

Eq.(2.4) takes the form:

[( 2 + V
0

(R ) - E  + H(R) = 0. (2.6)

By analogy applying a similar expansion to an electronically inelastic process described by

Schroedinger equation (2.2) we come to the set of ordinary differential equations in the mixed

representation:

w- d * __2 7 Y v,,(R) ,+ , U vI(R)Ovtv 0
2 dRj2  %*V v dR v9' 1;vv•

(2.7)

There are two questions which we need to address here. First of all, we construct

asymptotic solutions of (2.1) as h -4 0 . It is a relatively easy problem which can be formulated

in an arbitrary set of variables. It is much more difficult to find the connection formulas between

different asymptotic solutions. (As stressed by Schiffl II the asymptotic solutions are of little use

to us unless we know how to connect them together.) This part of the problem can be solved only

with some additional assumptions concerning the motions under discussions. Here we restrict our

discussion to systems with a single unbounded degree of freedom (a streamline motion) coupled

with several quasi-periodic degrees of freedom such that each motion has a different time scale.
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There may be also some cyclic motions which do not create any difficulties on their own. All the

bound motions are uncoupled at large values of the streamline coordinate R and are assumed to be

adiabatically separable in the interaction region so that one can apply the usual WKB quantization

rule2.

Let us illustrate the made assumptions , using scattering of a diatomics by an infinitely

massive incorrugated surface as an example. The cyclic motions are represented by the precession

of the diatomic around the normal drawn from the center of mass of the diatomic to the surface.

Relative oscillations of two atoms and the nutation of the diatom give us two quasi-periodic

degrees of freedom. As stretching vibration, described by the variable r, usually has a much larger

frequency than the nutation we treat the former as a quasi-periodic motion with a frequency
parametrically dependent on the nutational angle 0 and the streamline ccordinate R. On the other

hand, the nutation is expected to be faster than streamline motion so that we can describe it as

quasi-periodic motion with the frequency dependent parametrically on R. We thus negelect the

effect of small-amplitude oscillations of the interatomic distance r on the nutation of the diatomic

and treat the diatomic as a rigid linear rotator in this particular context. We shall see below that one

needs these assumtions only to formulate the connection formulas for the asymptotic solutions and

we do not make any approximations in the classical hamiltonian itself to be consistent with these

assumptions.

Note that we included precession in our analysis only to be able to run trajectories in the

Cartesian coordinates. One can directly start from the Schroedinger equation expressed in terms of
the curvilinear coordinates R, r, 0, The appropriate kinetic-energy operator

A h2 32 2 2 12  2  1 a a

T 2gr aR 2  29 r ir2 21pr sin sin (2.8)

is very similar to that for the J--O atom-diatom nonreactive scattering problem:

T - 2 2 2 2 2( +
T -9RaR2  - 2R 1r sin n (2.9)

with r is the interatomic distance in the diatomics, y is the angle between the diatomics and the
vector R drawn from the incident atom to the center of mass of the diatomics and R=I R I. (Note

that the volume elements dR dr sinO dO and dR dr siny dy are defined in both cases in exacly the

same way.) Therefore vibrational excitation of an diatomics in a J=O collision with an atom and
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scattering of diatomic molecules by incorrugated surfaces can be formally treated in terms of the

nearly-indentical formalisms.

To extend the theory of semiclassical transition probabilites to multichannel equation (2.1)
we start from Dirac-Marcus' representation6 ,12 of the wave functions VI(Q), V2(Q), ...,Vn(Q) as

NV'(Q)= AV(Q) exp[iWv(Q)/h], v=1,2,...,n, (2.10)

where A v (Q) and W v (Q) are ma functions which vary slowly with their arguments.

Substituting (2.10) into (2.1) with

P (Q) 7  WV(Q), (2.11)

2- I P( A(Q) g (Q) PR ( Q )  (2.12)

94LI

2and neglecting the terms of the order of h , we come to the following set of differential equations

of the first order:

-P Vv-E- -- ih v 7 -F P

(2.13)

referred to below as the Semiclassical Multichannel Equations (SMEs). Note that div here

implies use of the covariant derivatives of a vector I so that

-4
div I g g g (2.14)

One can easily verify that

P(Q)+ Veff(Q)= E (2.15)

with
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vef (Q) Vv(Q) + Vv (Q) (2.16)

and

8VV -h 7 F vv' P Av sil(WV, + Wv)fl]/Av' (2.17)

and hence the function W v (Q) is Hamilton's characteristic function13 for effective potential

(2.15).
The SMEs have the trivial solution for the single-channel problem:

+-V (Q 2+ (Q)=E , (2.18a)

div [ ; j = 0 (2.18b)

with

p I(Q) = A2(Q) . (2.19)

However what is taken for free in that case turns in a rather complicated problem if one has

to include interference between the channels. Even the initial incoming values of effective potentials

(2.16) cannot be unambiguosly determined because the boundary condition for Hamilton's
principal function W v (Q) is known only for the initially populated channel labeled below by

index 1. As a result, quantum-mechanical correction (2.17) to the potential governing classical

trajectories turns out to be an ill-defined functiorn in the infinite-separation limit.

One of the ways to bypass this difficulty is to neglect quantum-mechanical correction
(2.17), compared with the adiabatic potential V v (Q), bearing in mind that this correction is

proportional to h and hence it disappears in the limit h -40. In the one-dimensional case the

neglect of this correction leads us to the set of ordinary differential equations that can be solved by

means of the finite-difference method provided that the coupling coefficients are negligibly small

near the turning points and hence one can make use of the standard WKB connection formuale in

each channel. The same assumtion is used by us for the streamline motion in the multi-dimensional

case however the necessity to solve the set of partial differential equations makes the problem much

more complicated. To overcome those difficulties we develop two approximate methods of its

solution: Self-Consistent Eikonal Method10 (SCEM) and the multichannel theory, Selfconsistent
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Adiabatically-Corrected Eikonal Method (SCACEM), both based on using classical trajectories as
curvilinear coordinate axes 8 . In next Section we outline this common part of two methods, by
representing the the SMEs in this particular curvilinear coordinate system by means of the standard

formulas of differential geometry14.

I. Trajectory-following coordinate system (TFCS)

Let us now express each of Eqs. (2.13b) in terms of its own set of the curvilinear
coordinates q( v) (t( v ),w)with w used for the initial values of w on trajectories governed by the

potential V (Q) and parametrized by the time t( v ) (instead of = R) different for each channel.V

Making use of the well-known expression for the covariant derivative (see Eq.(6.87) in Ref. 14
with g1/2 for J here):

div[= ,-1Yiv PV 'H gv) J V Ps V]j (3.1)

SS'

where g(v) are the coefficients of momemtum coupling in the new set of coordinates, J v is the
Jacobian of the transformation from q( v) to Q (positive by definition) and

p(v) = gv

-q) (3.2)

Taking into account that

s ss (v)q(V) = ,gmv Ps' (3.3)

with
0

4(v) , (3.4a)

.Sg

0 for s- (3.4b)

we can represent (2.13) as
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di h j- V v  E - -L + v

ih Lv 2 
(3.5)

1/h2' -4 4V 1/2.V 'I2 p V,/j-iniv I" F- V V' jl/2#

V'V V'

where we put

1l/2tv(t (v) w ) - v ( t(v ) w ) Vv(t (v) W )/Al(O'w), (3.7)

with index 1 used for the initially populated channel. Substituting (2.16), (2.17) and (3.7) in (3.6)
we find the following equation for the phase Wv:

dWv =JE- effQ [tvW~l (3.8)

dt(v)

and hence

t(v) eff

Wv(t(v), w 2 dt' E- Vvf (Q(V)[t(v), WJ) (3.9)
0

or, in a more farmiliar form:

t(v)_ (v) dJt
W (v), W0)= j 9P d(v). (3.10)

0

Note that SMEs (2.13) are independent of the particular choice of the curvilinear

coordinates Q as we assumed that the semiclassical approximation can be directly applied to

covariant Laplacian (2.2). Use of the Podolsky transformation 15 changing the volume element

leads to a quantum-mechanical correction of the order of h2 which is negligible compared with the

adiabatic potential if the region, where this correction is singular. is classically forbidden. The

well-known Langer correction 16 helps to overcome this difficulty for the Coulomb attractive well.

In the problems of our interest the complication comes from the nutational motion because the
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appropriate quantum-mechanical correction is singular in linear configurations, forcing the system
to stay away from those.

To evaluate the Jacobian Jv we make use of the numerical algorithm developed by Stodden

and Micha 17, extending it to the equations of motion in curvilinear coordinates. To be more
precise, we put

(V) -q (V) (3.11 a)
(V)

()ap(v)
p (V) = (3.1 1b)

~(V)

and integrate the equations:

.9ts W Q ]p(V)+_(v)IQ .tIsag (v)l

Q (V) ) A's (v) CQ (3.12a)

( v) (V) R'(s() I Q v

(3.12b)

together with the equations of motion:

.(V) "g) (v) av v

(v) ) (

IV, Self-Consistant Eikonal Method (SCEM)

Let us now introduce the average flow with the kinetic energy given by the relation

10



1p(Q) = 11P. V -(P )1/ (Q)
22 v v (  p  (Q PQ (4.1)

with

P(Q) - YP v (Q) (4.2)

Multiplying both sides of Eq.(2.15) by P v , summing over v and taking into account that the

vector coefficients F w, in (2.17) change their sign under the interchange of v and v' one can

easily verify that the function P(Q) satisfies the equation

1 p2() ()E
V-(Q)=E (4.3)

with

V/(Q) -- YVv (Q)P v ( Q ) / P ( Q )  (4.4)
V

and hence we can define the velocity field of the average flow by means of the relation:

-4 -4P (Q) -V W ,(4.5)

where W(Q) is Hamilton's characteristic function for the potential V(Q), namely,

IV W1 + VN(Q) =E (4.6)

Let us now, in following Micha' workI ° , write functions (2.10) in the common eikonal

form:

V V(Q) = x v (Q) expliW (Q)/h]I, (4.7)

WVv(Q) = 2V(Q) exPiW(Q)/h], (4.7')
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where we use tilda to mark the diabatic wavefunctions by tilda to distinguish them from those in

the adiabatic represention. We neglect the difference between the Jacobians in Eq.(3.7), writing

SMEs (2.8a), (3.7) as

do- [( L') v)2

ih = Vv -- IK IJv+ I F ,dt (v) 2' wI* ,

(4.8)

where we put

Ov(Q(vWt(v), a w J v , (4.9)

-v) -v)(4.10)
IC (Q)= P (Q)- P (Q) .

A similar equation in the diabatic representation takes the form

dpv - =[rV-IK+ V1 v I H , ,(4.11')
dt(v) 2VI*V V

where H w, are some diabatic potential couplings and tilda is used to distinguish between two

representations.
The main idea of the method is to run trajectories on the single potential surface

approximating the potential V(Q) by means of the relations:

v v (4.12)

V(Q),,- Y. H vvDv,(Q) O v(Q)/P(Q) (4.12')
V,V

with
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-- (v) ---(v)
After neglecting the deviations K of the momenta P from the average P which cannot

be evaluated on the trajectories in question we thus come to the following equations for the

functions 0 v(Q) and 0 v(Q):

do v  -, --4
ih- -Vv-V ~+ 7 F Pv (4.14)

tv'*v VV' V

do~v
ihdt-=[Hw-V]ov+ I H VV, . (4.14')

V'*V

Note that both sets of equations conserve the right side of (4.13) along any trajectory governed by

the potential V(Q). The equations are solved with the boundary conditions:

v(0, w) V (0,w) = 1 1o0 (w)]1/2 exp(- ik IR 0 + iW0 (w)/h). (4.15)

Compared with the discussion presented in Section III, a certain simplification of the formalism
comes from the fact that potential (4.4) does not contain the ratio of functions Av(Q) and Av,(Q)

and hence one does not have to deal with the indeterminate forms necessary to evaluate the
effective potentials Vv aLtL=. It is worth pointing out that the neglect of the deviations of the

-- (v) -

momenta P from the average P in Eqs.(4.11), (4.1 ') is the most serious assumption made

so far because it changes the asymptotic behavior of wave functions after the couplings between

the channels completely turn off. In next Section we show how one can eliminate this deffect by

running a separate trajectory in the field of each adiabatic potential, instead of a single trajectory in

the field of the average potential V(Q).
The set of equations (4.13') have been recently derived by Stodden and Michat 5 in a more

tedious.way by evaluating directly the time derivative of Jacobian (3.2). It should be emphasized

that although similar sets of coupled differential equations have been derived in the literature,

starting from the time dependent Schroedinger equation in either adiabatic 19 or diabatic20

representations, the crucial difference comes from turning points where the phases of the functions

P v(Q) and 0 v(Q): take a discontinuous change. The novelty of our approach when extended to

the multi-dimensional case comes from the explicit use of the time-scale separation to carry those

functions through the caustics. We show below that the equations of motion used by us in the

multi-dimensional case also differ from those derived by Meyer and Miller2° .
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Potential (4.12') has a very interesting feature, namely, its first derivative with respect to

time is given by the simple relation:

- -.4 .--

V- a p V H jviv , /P. (4.16)

To prove it we need just represent (4.12') and (4.13') as

1-
_~j = _(4.17)

and

ihfO=(H-Vl)O (4.18)

and then substitute (4.18) in the derivative of (4.17) with respect to t, taking into account that the
matrix H - V I commutes with H . The direct consequence of the proved result is that in the M-

dimensional case the trajectories are governed by the Erenfest potential:

F dH
== /(4.19)

dQ1

(We can always make g I equal to a constant l/tR by the appropriate change of variables so that

no additional term appears in the equation for the streamline motion.)

The governing potential force in the multi-dimensional case has a more complicated form:

=L -HH - H /P f J
- > a -Q 

- /-
(4.20)

where we put

_ t - -A (4.21)

Evaluation of derivatives (4.21) along trajectories governed by Erenfest potential (4.12') is

discussed in Appendix A.
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V. Selfconsistent Adiabatically-Corrected Eikonal Method (SCACEM)

The most essential obstacle in solving Eqs. (3.6) in the case of more-than-one channels is
that the functions v, with v' * v in the right-hand side of (3.6) are supposed to be evaluated

on the trajectory Q (V)[t M w] * To overcome this difficulty let us first assume that dependence

of the nonadiabatic couplings F on the quasi-periodic coordinates Q , Q2,... is negligible at

large values of the streamline coordinate R=Q and only the component F 0  along theVV'

streamline motion is asymtotically important. As a result of this assumtion SMEs.(2.13) become

asymptotically separable. This implies that

Pi JVV-4VIR=- =hk v(w O-Rv  (5.1)div [ ~v

(where k I is just a constant) and hence

arg[v(0 w)] =-ikv(w)R 0 + iW 0(w)h + mod(x) , (5.2)

P) = (w) w P,>0, (5.3)

and

hkv(w) =(25.[V4(0,w)-Vv(S0,w)]+h 2 k (54)

We represent now Eqs.(3.6) as

ih R(v ,w] wV)w = [V vQ(v _R,w]) - E -P R, [w] 12] tRwJ

j1/2 ., -(Vw i ( .v[Q(v-)]/h

-ih . vv, (v ) /[Qv_)] v

(5.5)
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where minus marks the incoming wave, the components P [W~ of the momentum

-40V
' [Q(V A, Jacobian J IQ(V )] and the phase shift gWv.[Q(v_ j are approximated

respectively as

g/ (V) / -vQ1 gR'P( P (52+PI /2P0 IQ (V-) (V) -[[ (( 2g5 L t i (V)'

(5.6a)

P(V) (V)

±[E -VR, W..,Q g (V)'g+ ,.. E-V 1 R,Q.,Q-

s>0
with

2 gogp(O(5.7)

ji [Q ( A-)

BWQ(V) It (v)
VW4Q(v)] I d Q P IL [Q (v] (5.10)

R>0
(W)
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(Sign (+) or (-) in (5.6b) is chosen depending on the direction of the appropriate one-dimensional
motion.) We integrate (5.5) by running a set of trajectories on the adiabatic notenfial surfaces with

the initial conditions given by Eqs.(5.3), (5.4) for the momenta and

W W= Vl0(wA1/2 ° V0(w)/h) (5.11I)v(O~w)=Svl[pO(w)lfexp(klRo+ OiW , 5.1

for the wavefunctions themselves.
The most important consequence followed from the presented mathematical arguments is

that the semiclassical multichannel solution sought for does have the eikonal form -- remember that

existence theorems have been proved only for single-channel processes 12 . The equations for the
outcoming wave are similar to (5.5) except that they are solved with a diifferent initial conditions
formulated using the WKB connection formula at the classical turning point for the streamline

motion on the appropriate adiabatic potential surface.

VI. Evaluation of the S-matrix elements from semiclassical wavefunctions

To avoid the singularities at the classical turning points, when evaluating the S-matrix

elements:

. (v).
_(v) 1 (v -ik.R ' . (.1

I , e v -'dwVvv(Rfw)u(W) (6.1)

where u v ,(w) is an exact quantum-mechanical wave function and v is a set of the appropriate

quantum numbers, we first represent (6.1) as

(v) 1 Rf+AR
sv _ dR s(v)

Rv;v'. (6.2)

The relation turns into the identity if we deal with the exact matrix element which is independent of

R. We thus find

AR k(v) ,(v)
v v;v7
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(v ) t f(w°'91)) J/2jd) jk!vl(de j dt J (t'Wo'u) v(t'w0'1))Uv(t)w '
0 (6.3)

where

vv(t'w0,) - v(t'w0, ))e-k (V) °wU) R( tw O') (6.4)

dws  pS (wS)1 )/m

dt' 0 (6.5)

and T'V is the absolute value of determinant of the auxiliary matrix with the elements

is Is I
(V Q P (Yu (6.6)(v) - Q(v) P(v)(W0' ) (6)

'is
propagated instead of the functions Q As to avoid singularities in the initial conditions for

functions (3.1 Ib). (The function P 0(w) in (5.11) is chosen in such a way that the matrix element
s(1)
v;v is equal to I for elastic collisions.) The crucial advantage of the integral (6.3) compared with

(6.1) is that the Jacobian J v appears now in numerator whereas function (6.4) is nonsingular.

Conclusions

The following formal issues were examined:

(i) development of prescriptions for continuation of global semiclassical wavefunctions

through classical turning points,

(ii) development of a practical numerical algorithm to extract final populations of vibrational
levels from the semiclassical outgoing solution,

(iii) exploration of means to go beyond the assumptions underlying SCEM to take into

account specific topology of the adiabatic potential surfaces, especially responsible for tunneling
and related resonances which gave rise to the new multichannel semiclassical theory referred to as

SCACEM.
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Detailed numerical studies such as the ones 21 in progress are expected to reveal the

potential and power of this framework.

Apendix A

The derivatives of w A with respect to Q are elements of the matrix Q-Iwith Q formed

by the functions

(v) = Q
0 (v) (Al)

We thus come to a nonlinear set of differential equations -- we need to know the derivatives of Q

with respect to q to write the equations of motion and we need the equations of motion to evaluate

those derivatives. The situation is complitely different from that for the single-channel problem

because in the latter case the potential is the known function of coordinates. To decouple the

equations we neglect the second derivatives of the functions 13 , P and Q with respect to q. One

finds

(v) a 2 H " H Z) H 2- Q 2R _ =Q [ -=lt _,'i,~ 3  ~ ,aQ.i t~ - _. _4f _

+2 . w' Re(13,t t H3,t)-o ,Re(P HP )rP rp-+P0,IP,V. H 0/P
g1t0aQ 9-t - = _A =_ _=

g' I-Y ,L,(_- a~ H~t a" HQ, t -H

+ I Q~v t - 0+ 4- P - , it ,P = /

(A2)

with

p14' (v)

(v) iq'v )  
(A3)

(V)
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Functions (AI) are then found by integrating the equations:

.99 ' _g' -(A4)

Q(v): P (v)

To take into account the divergence of streamlines we use Eqs.(4.16) only to find the phase

of the function 2 v (Q ) whereas its absolute value 0[ v(Q)I is evaluated by solving the equations:

with

1/2%v =P Olv/20v I  (A6)

and J used for determinant of the matrix Q:

j - (A7)
a(q)

A similar scheme can be developed in the adiabatic representation.
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I. INTRODUCTION

Molecular collisional energy transfer presents a computationally challenging

problem to the dynamicist even after the global potential energy surface is known. A rich

variety of quantum mechanical, semiclassical and classical models may be constructed to

solve the problem depending on the behavior of the potential energy surface which

controls the collision dynamics. The information from modem laser-based experiments,

involving precise microscopically detailed observations of collisions, is in the form of state-

resolved cross sections and demand an explanation from theory at that level of detail.

Classical mechanics in itself does not offer a long-term solution for obtaining such state-

resolved information. Fully quantum mechanical treatments become unwieldy for realistic

systems despite recent triumphs that exploit efficient algorithms on supercomputers. Thus

there is a present-day need to develop and exploit semiclassical dynamical theories that hold

promise. In order to obtain general results, it has to be based on a systematic process

involving detailed benchmarks against accurate quantum mechanical results for smaller

systems and the development of controlled computational schemes which are careful paths

to accomplish the devious transcription from classical trajectories to semiclassical

wavefunctions.

The present paper reports a study of vibrational excitation during atom-diatom

collisions in gas phase and is one of many successful numerical experiments in which we

have employed the eikonal ansatz for the semiclassical wavefunction. The relevant general

formal discussions have been presented elsewhere in greater detail. The present article will

focus on the formulation for the vibrational excitation problem and its numerical

investigation.

In this paper we consider a two degree of freedom model of atom-diatom collisions
(O+HF and Na+H2 collisions are studied) as defined in the rotational infinite order sudden

(1OS) approximation. The numerical tests presented here are benchmarked against

previously existing quantum lOS (QIOS) results. Two distinct dynamical models are

employed in this paper to describe state-to-state vibrational dynamics: (1) is based on

combining a classical treatment of translational motion with a quantal states expansion in

target vibrational states (called RSVE: for rotational sudden with vibronic expansion) and

(2) is based on employing semiclassical eikonal wavefunctions for all degrees of freedom



obtained from their classical trajectories (called SIOS: for semiclassical infinite order

sudden).

II. THEORY

1.IOS Approximation in the diabatic representation

The rotational IOS approximationl for the atom-diatom scattering problem is based
on solving the two-dimensional Schroedinger equation with the Hamiltonian:

A _ h 2 2  2h 2  a2 h 2 1(1 + 1) f 2 j(j + 1)

IOS g. D 2 L2gRB 2  2g r2 =

where H(R,r,') is the n x n matrix of the diabatic potentials and couplings between

different electronic states, R is the distance between the center of mass of the diatomic BC
and the atom A, r is the bond length in the diatomic BC and ^I is the angle between the
diatomic and the radius drown from its center of mass to the atom A.

2. Quantum-mechanical treatment of vibrations.

In following Redmon et. al. 2 we reduce the problem to the infinite set of the
ordinary differential equations of the second order by using the matrix representation for
the hamiltonian in the space of the vibrational coordinate r, namely, we use the
eigenfunctions of the Schroedinger equation:

h 2d2- +VBr)+ hj2 (j+ 1) 0 (2.1)

as the basis set and represent (2.1) as

d2nv -k 2  vI
2 f+ Y , "n'V 0 (2.2)

dR n ,v

2



where we put

h nv,nv(R) 8 8 R 2

+ ,I AD1 +Jdr uj(r) uj (r)[H 4Rr,y) S V B(r)]
2 n w' R2 nn'B

(2.3)

with

hkjv [21g(E - FJv)] 1/ 2  (2.4)

and

AD Ii (r,v) -H11(ry]A = R-- 11 ( r ' - Hll(R'r'T)] (2.5)

used to evaluate the probabilities of transitions from the 11 th electronic state.

We solve the set of coupled differential equations (2.2) by representing

wavefunctions N'nv in the common eikonal form3 :

Vnv(R;y) = nv (R;y) exp [iW (R;y()/.hJ/PJ (R, y) (2.6)

where Wf (R;y) is Hamilton's characteristic function 4 found from the Hamilton-Jacobi

equation4
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12 1 2
I(R;M) + V (R;¥)k

2g 1 jv (2.7)

with 1 = dW
I dR (2.8)

and V (R;y) denotes the Ehrenfest potential:

V(114Y) h3vnvi~v

nv,n vI nv,n v', n V jl*1 j(2.9)

Ji
The functions nv satisfy the set of coupled equations:

ihI nv- -h , V nv
nv,n',n'vv' - (2.10)

and are solved together with the equation of motion for the potential (2.9).

3.Semiclassical treatment of vibrations

A.Equations of Motions

We represent the wavefunction V(I, r; T, lj ) in the eikonal form:

V(I r,yIj) = A(ILr;y, lj) exp[iW(R,r;'y;lj)/hi (3.1)

where W(R,r;y;Ij ) is Hamilton's characteristic function:

4



--- + 2- -)2 + U(R,r;y;lj) = E
dR dr(3.2)

for the potential

h 21(1+ 1) h 2j(j+ 1)U(R,r,T,j)E-V(P.,r;y) + 2 + 2(3.3)
24R 2  24 BC r2(3)

The momenta conjugate to the coordinates R and r are given by the relation:

dW dW(34
P0(R,r;y;lIj ) W = -, PI(R, r;y, j OW (3d"")

To carry the wavefunction V(R, r, y lj ) through turning points we represent it as

V(t,r 0; T, lj ) a J-1/2 (t,r0; y j) A(0,r0;j) t(t,r0;y,;lj) (35

where t is time, r0 is the initial value of r on the trajectory run on the potential surface U

and J (t,r 0; , lj ) is the Jacobian of the transformation:

t,r 0 -+ R(t, r0;y;lj), r(t,r 0 ;Y;lj) , (3.6)

and then assume5 that the function t(t, r0 ;y;lj ) is continuous everywhere by analogy with

the one-dimensional case. We, in following Ref.5, solve the equation:

5



ih- d=[U - E - (PO)2 (P 1)2]
dt 2 2g C -(3.7)

as if the function (t, r0;y;lj ) itself were continious, finally shifting its phase by 7r/4 times the total

number of the turning points passed.

B.Initial conditons

Let us put Q0 _R, Q -r, w S r 0

h2j(j + 1)
V.(r) 

+ h +

2LBCr (3.8)

Then the initial conditions take the form

Q (Oro '± 1)fR 0 , Q (to0 ro'+ 1)=r 0  (3.9)

pO(to~roP 1)-p , p(tafro,± 1)=: Pr(r 0 ) (3.10)

with

p V=hk .= 2t(E-e (.)v VJVJ (3.11)

and

Pr(r)- 1 2 tBC[e vj- Vj(r)] (3.12)

Q0 (r9 1) - , Ql(O,r O + 1)=1
1(, o 1- 1 (3.13)
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P 0 (t r0,± 1)S0, Pl(O,r0+ 1)=- ItBC _dVji
pl(O,r0 ,± 1) r=r° , (3.14)

WO~ro 1) ±r o

r0 1)= +[rdr'Pr(r')- (3.15)

J(0,r0 ,± 1)-- Pj, (3.16)

0Pr(r 0 )]-1/2 iWo(rol)-ik ViR°
V(Or 0,±e (3.17)

(0,r0,+ 1) =-J(0, r0,+ 1)1 1/2 iW°(r°'± 1)-ikVR o1) = 1 J O 0 ±e 'J 0(3.18)

c.Connectlon formulae

If the interaction between vibrational and collisional motions is negligible the derivative of r

with respect of its initial value r0 can be evaluated by differentiating the equation:

r(t,r0 )

t = tBC J dr/Pr(r') (3.19)
r0

with respect to r0 at the fixed moment t. We find

prl(r){ )j - prl(r0  (
(CI t (3.20)

and hence
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(aQ1
(I 0 )t=Pr(r)/Pr(ro)

0
Therefore if the off-diagonal element Q 0 can be also neglected the Jacobian J factors as

pJ(t,r 0 ,± 1) -P 0(t, r 1)P 1(t, r0,:t± 1)/PI (to,r0 ± 1) (3.22)

and its zeros approximately coincide with zeros of the momenta P0 and Pl. We thus assume that

jumps of the Jacobian on the caustics are governed for adiabatically separable motions by the

standard WKB rules, namely, that the function It(Q) is continuous there, whereas the phase of the

function C(Q) decreases by ir/2:

W(Q) -4 W(Q) - r/2 (3.23)

if the Jacobian changes its sign, and by x, if both momenta change their sign during the same time

step.

D. Average of the final amplitudes over the initial conditions

The exact quantum mechanical wave function has the asymptotics:

Uv(r) -ikvR f  u v(r) ikV J.Rf
'vj(Rf, r)v=e + "S . t/2- e

vR . v',j' vJ;vJ' k' 9 (3.24)
vi v

where the S-matrix elements S -';v' v for vj * vj' are given by the relation:
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-kvOIRf

ikv vfrfo .(Rfr)u. (r) (3.25)Svj;vjj -

By analogy with (3.25) we evaluate the semiclassical S-matrix elements by means of the relation:

I -ikv]R f
Sj;v'j = 2 7e ' jdr N.(R ., r;,u)u , j(r) (3.26)vi. i"v--Jj 0 v

To avoid of the singularities in the turning points we first represent this matrix element as the two-

dimensional integral using the relation:

R f+AR

S 1  JdRSvj;v'j AR Rf vj;vJ' (3.27)

(The relation turns into the identity if we deal with the exact matrix element which is independent of

R.) Substituting (3.26) into (3.27) we find

AR(k vjtBCC.j) 1/ 2 S vj;vj '- (3.28)

r+ [ k(ro ) 1/2 t f(r1rD)

---- 1 r- 0 [Pr(r V)  I dt J 1/ 2(t,r 1)( j (t,r 0 ,'u)u v j (r(t);r0 )

T/2 1/2 tf[?- )J
3/4 j__:1 dr k - I dtr 1 1 [t,,t,]-J ' .[t,TVuvj,(r(t);r0(T))
BC 0 0

where
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0- C(3.29)

R~t, r a ) = pl(t 01 r09, )J(t,rf u ) -= (3.30)

with

l(t,rov)- ap I(to~rff )Ql0(t,r, U ), lt, ro09V) --- IP(t frU ) Ql(t~rol) . ( 3.31)

and the notations [,D] and [t, , -] stand for (r0Vt),U) and (t, r 0 (c),u). We directly
0 1

propagate and ?l along the trajectory to avoid possible complications coming from the

singularities in (3.14) which appear if the trajectory starts from the turning point.

III. POTENTIAL ENERGY SURFACES

Two candidates of collisional excitation of vibrational levels, (1) in
O(3P)+HF(v--O,j--0) collisions and (2) in Na(3s 2S)+H 2 (v-0,j=0) collisions, both of

which have previously existing potential energy surface information, were studied. The

potential energy surface for the OHF system is based on an earlier UHF calculation2 and a

sum over pairs plus three-body correcting analytical fit (surface 1 of ref. 2) whereas the
Nail2 collisions were studied on a DIM potential energy surface.6 A LEPS fit to MCSCF

results for OHF were also generated in ref.2 to enable the dynamical study of the H

abstraction reaction but this needs to be employed only at higher energies than presently

reported. We refrain from including the analytical and numerical details regarding the

potential surfaces for brevity since they are published elsewhere.

A central feature of the OHF potential surface that is relevant for vibrational

excitation dynamics is the expected concentration of most of the vibrational excitation (at

10



lower energies) to a narrow range of IOS-angles, close to the approach of 0 atom from the

H-atom end, of the HF molecule; in this direction, the potential surface allows a reactive

encounter to occur at higher energies. This will be borne out by the dynamics results
below. In the case of NaH2 collisions, only the electronically adiabatic ground surface

(obtained from diagonalizing the 8 diabatic DIM surfaces of ref. 6) is employed in the

electronically elastic results to be presented below for comparing QIOS and RSVE results.

IV. CALCULATIONAL DETAILS

The RSVE dynamical calculations using eqs. (2.10) are straightforward once the

potential matrix in the vibronic basis is setup to be computed. This is done by

diagonalizing the asymptotic vibrational Schroedinger equation in a harmonic basis set or

employing one of many standard numerical algorithms1 to obtain the target states. The

atom-diatom potential matrix is readily computed along the trajectory sire it is expanded

in these target states which have amplitudes that vary with time according to eq. (2.10)

thereby leading to a time-dependent potential obeying (2.9). The amplitude initial

conditions are chosen to correspond to unit probability in the diatomic v=0 state. The

separation R is chosen large and the asymptotic negative relative momentum is defined by

the channel potential in the v--0 channel and collision energy. The final amplitudes in other

state channels resulting from solving the dynamical equations yield the inelastic transition

probabilities. The computation of cross sections involves integration over many trajectories

that represent varying lOS-angles and impact parameters for each given initial rovibrational

state. All the preliminary computations reported here are for initial v=j=0 for the diatomic

and the study examines dependence on collision energy and total angular momentum

(semiclassically defined by the impact parameter).

The SIOS calculations start with the generation of a bundle of classical trajectories

determined by the collision energy and total angular momentum. Only 20 trajectories are

employed in the present results. The main task involves building the semiclassical eikonal

wavefunction along these trajectories giving special attention to the semiclassical phase

changes at caustics (such as classical turning points). The latter are determined by the

semiclassical Born Oppenheimer approximation (see previous section and Appendix 2)

applied to the present problem. The post-collision eikonal wavefunction is then projected

onto selected final states to directly determine the S-matrix elements for inelastic transitions.

The projection process employs interpolation of the asymptotic eikonal wavefunction to

result in a finely grided numerical quadrature for S-matrix amplitudes since the inelastic

11



trajectories end in a nonuniform grid even when the initial conditions start from a uniform
grid. Cross section computations involve integration of these amplitudes over IOS-angles
and impact parameters and introduce further quantal interference effects.

V. RESULTS AND DISCUSSION

Figure 1 shows that excellent agreement with an exact limit QIOS benchmark is
obtainable from the RSVE computations. This success of RSVE in gas phase is consistent

with the similar success that the coupled states ansatz has had in treating rotationally-
electronically inelastic gas/surface encounters involving up to 282 channels. 7 The most
exciting aspect of figure 1 is however the promise shown there by the SIOS method, which

is seen to capture the essential physics of this collision; the results shown are from SIOS
calculations that employ semiclassical wavefunctions based on a meager 20 trajectories and

are not yet numerically the best they can be.

Figures 2 (a and b) show dependence on total angular momentum for the two
examples of vibrational excitation studied here. Fig. 2a contains all the data available at the
time of this report. (Detailed calculations are in progress to make a full assessment of the
methodologies in different L and Etr regimes.) The Nail2 computations were done to see if

the quality of agreement is maintained for a completely different molecular system and Fig.
2b is encouraging (note that H2 being a homonuclear diatomic molecule is fully studied by

sampling half the lOS-angle space compared to HF).

VI. CONCLUDING REMARKS

We have produced a systematic numerical benchmark for collisional excitation of
vibrational levels employing semiclassical methods. Two semiclassical computational

routes, (1) using a coupled quantal states ansatz to describe vibrational states quantum
mechanically and translational motion classically, within the SCEM framework, and (2)
using semiclassical wavefunctions generated from classical trajectory results using a newly
developed (semiclassical Born-Oppenheimer approximation) procedure were tested against
exact quantum limit results. Both the semiclassical methods were successful in obtaining
reliable numbers for state-to-state vibrational excitation probabilities. The use of method
(2), termed SIOS herein, is indicated as an exciting prospect: such a technique is to be

welcomed as a computational route allowing the transformation of information from
classical trajectories to state-to-state transition amplitudes at the semiclassical level. T he

12



novel feature of the SIOS scheme employed here compared to rigorous S-matrix theory of

Miller8 (which was difficult to apply in practical problems and soon went out of use) is

that there are no nonlinear root trajectory searches to be performed here; instead, amplitudes

are obtained by projecting the eikona scattering wavefunction on to specific final states.

The promise of such a method was demonstrated earlier in the Franck-Condon region for

photodissociation, 9 but the present validation for vibrational excitation processes

significantly extends the validity regime, by demonstrating that useful quality persists in

outgoing eikonal wavefunctions in the asymptotic region provided valid connection

formulae are employed.
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Figure Captions

1. Comparison of angle-dependent probabilities for v--O -> v=1 vibrational excitation
in O(3P)+HF(v=Oj--O) collisions at Etr=3.OeV, for total angular momentum, L=O.

Points are marked by bullets = SIOS, circles = QIOS, and stars = RSVE results.

2. (a) Comparison of RSVE and QIOS results for variation of IOS-angle dependent
v=O -> v=1 probabilities with total angular momentum L at Etr=3 .OeV for

O(3P)+HF(v=O,j--O) collisions.

(b) Comparison of RSVE and QIOS methods for variation of IOS-angle dependent
v--O -> v=l probabilities with total angular momentum L at Etot = 0.075 au for

Na(3s 2S)+H 2 (v=0j--0) collisions.
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